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An accurate and practical surface impedance boundary condition in the time domain has been
developed for application to broadband-frequency simulation in aeroacoustic problems. To show the
capability of this method, two kinds of numerical simulations are performed and compared with the
analytical/experimental results: one is acoustic wave reflection by a monopole source over an
impedance surface and the other is acoustic wave propagation in a duct with a finite impedance wall.
Both single-frequency and broadband-frequency simulations are performed within the framework of
linearized Euler equations. A high-order dispersion-relation-preserving finite-difference method and
a low-dissipation, low-dispersion Runge—Kutta method are used for spatial discretization and time
integration, respectively. The results show excellent agreement with the analytical/experimental
results at various frequencies. The method accurately predicts both the amplitude and the phase of
acoustic pressure and ensures the well-posedness of the broadband time-domain impedance

boundary condition. © 2009 Acoustical Society of America. [DOI: 10.1121/1.2999339]

PACS number(s): 43.28.Js, 43.28.En, 43.20.Rz [GCL]

I. INTRODUCTION

The acoustic impedance condition in computational
aeroacoustic (CAA) applications, such as the calculation of
sound propagation and absorption through an engine inlet
duct and the reflection of acoustic waves in outdoor propa-
gation, is an important issue.' Until now, several analytical
attempts have been made to solve problems of acoustic wave
reflection above an impedance surface. Analytical solutions
and asymptotic formulas are useful and efficient if one is
interested in a single observer point in an acoustic field. Li
and White® derived an analytical expression of acoustic
waves by a harmonic point source above an impedance sur-
face. Di and Gilbert® recently represented the total acoustic
field due to a point source above a complex impedance plane
as a sum of the free space field and an image-source field,
and obtained an image integral, which is relatively simple
and rapidly convergent compared to the usual Sommerfeld
integral. In more realistic and complicated broadband-
frequency problems, however, it can be considerably diffi-
cult, if not impossible, to find analytical or approximate ex-
pressions. Because experimental approaches can be laborious
and expensive, time-domain numerical approaches provide
an attractive alternative for analyzing the effect of an imped-
ance surface on the propagation of acoustic waves generated
by broadband sources, such as a high-speed impulsive
source.

Recently, several attempts“f14 have been made to imple-
ment the impedance boundary conditions in the context of
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the time-domain methodology in CAA. Davis® considered
acoustic waves in an open-ended pipe and solved the rel-
evant one-dimensional equations using a fourth-order com-
pact difference scheme with low-dispersion error and no am-
plitude dissipation error. He obtained the impedance
boundary condition at the open end of the pipe by the inverse
Fourier transform of the standard frequency-dependent im-
pedance for transients with predominant low-frequency con-
tent. Bottledooren’ proposed a finite-difference time-domain
method for the simulation of the acoustic field on an analyti-
cally generated quasi-Cartesian grid and a simple expression
for the impedance boundary condition relating pressure to
the corresponding normal velocity where the normal imped-
ance is given. The advantage of the method for the curved
impedance boundary is demonstrated. Tam and Auriault® de-
veloped time-domain single-frequency and broadband im-
pedance boundary conditions for the three-parameter imped-
ance model of the Helmholtz resonator type. Zheng and
Zhuang7’8 verified and validated their broadband time-
domain impedance boundary condition in semi-infinite two-
and three-dimensional ducts with acoustically treated walls.
Their impedance model, however, is a simple resonant type
that cannot be extended to the general impedance problem. A
general impedance condition was proposed by Long and
co-workers”'” based on the z-transform. They pointed out
that although the impedance model in rational form provides
“quite accurate resistance and reactance representations of
the experimental impedance data used in this paper, these
representations did not meet the stability and causality crite-
ria” as it does not ensure that the poles of the impedance lie
within the unit circle in the z-domain, and that the region of
convergence lies outside the outermost pole. Furthermore,
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for accuracy, it may require a high degree of the rational
function, which in turn requires high-order derivatives of the
pressure and the velocity resulting in increased computa-
tional time. Fung and Ju'"™" discussed some issues concern-
ing the modeling and implementation of the time-domain
impedance boundary condition. They showed that the reflec-
tion process corresponding to a typical impedance model is a
convolution of the incident waves and the reflection impulse
(which is the inverse Fourier transform of the reflection co-
efficient). It is pointed out that a direct inversion of imped-
ance into time-domain boundary operators generally leads to
an unstable system, whereas the inversion of the correspond-
ing reflection coefficient results in stable, easily implement-
able boundary operators for time-domain prediction of wave
reflection. They validated their models with the available
analytical and experimental results. Although this approach
is convenient to approximate an impedance curve and to treat
the impedance condition numerically, high-order polynomial
expansions for the reflection coefficient may lead to severe
over- or underpredictions beyond the limited frequency re-
gion of interest. Furthermore, it is difficult to represent the
resonance phenomena in the impedance curve using this ap-
proach. The impedance modeling technique of Wilson et
al."* cast the convolution integrals of their relaxation imped-
ance model in a form amenable to numerical implementa-
tion, and it has been demonstrated on two-dimensional cal-
culations of outdoor sound propagation involving hills,
barriers, and ground surfaces with various material proper-
ties. This approach is both computation and memory inten-
sive since convolution integrals are involved.

The objective of this paper is to develop a robust, accu-
rate, and practical time-domain impedance boundary condi-
tion for acoustic simulation with broadband frequencies. To
validate this condition, two kinds of numerical simulations
are performed: one is acoustic propagation due to point
sources over an impedance surface in an open field and the
other is noise propagation in a duct with a finite impedance
wall. Examples of a typical grass ground impedance and a
wool-felt ground impedance are used to illustrate the practi-
cality and effectiveness of the impedance model for the first
case."” Both single-frequency and broadband-frequency cal-
culations are performed. The second set of examples is for
acoustic propagation in a two-dimensional duct with a finite
ceramic tubular liner (CT73).!%!® The numerical solutions
are compared with the analytical/experimental results in both
cases.

The paper is organized as follows. Section II provides
brief mathematical preliminaries, and succinct derivation of
the impedance boundary condition followed by a brief de-
scription of the discretization scheme. Section III describes
the validation problems with their governing equations,
boundary conditions, and discretization scheme. Numerical
results are presented in Sec. IV.

Il. BROADBAND IMPEDANCE BOUNDARY
CONDITION

A. Mathematical preliminaries
The characteristics of acoustic impedance are measured

and usually described in the frequency domain. Myers17 and
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Ingard18 derived a general acoustic impedance boundary
condition assuming that an acoustically treated wall makes
deformations in response to an incident acoustic field from
the fluid and ignoring a possible hydrodynamic mode."
These deformations are assumed to be small perturbations
compared to a stationary mean surface, and the correspond-
ing fluid velocity field is a small perturbation about a mean
base flow u,. The linearized frequency-domain impedance
boundary condition with mean flow is expressed as

pw)
iwZ(w)’

Ww) n=({w+uy-V-n-(n-Vug)) (1)
Here ii(w) is the complex amplitude of the velocity pertur-
bation, w is the angular frequency, n is the normal vector to
the wall that points into the wall, p(w) is the complex am-
plitude of the pressure perturbation, and Z(w)=R(w)+iX(w)
[where R(w) and X(w) are the frequency-dependent resis-
tance and reactance, respectively] is the acoustic impedance.
(All these quantities are nondimensionalized with respect to
their corresponding characteristic values, which are defined
in Sec. III.) The use of this condition is limited to linear
unsteady flow problems. Since the mean flow mainly satis-
fies uy-n=0 on the wall, this equation can be recast into

hlw)

iwZ(w)’ @

Ww) n=({w+uy-V+uy: (n-Vn))
where n-Vn is tangential to the wall surface and vanishes for
a flat surface. If Z(w) is assumed to be independent of posi-
tion, we get the following form by multiplying iwZ(w) by
both sides of Eq. (2):

iwZ(w)i(w) - n=iop(w)+uy- Vp(w) +uy- (n- Vn)p(w).
3)
By applying the inverse Fourier transform to Eq. (3) and

considering the causality condition, we get the impedance
boundary condition in the physical domain as follows:

I J 3
;Tfo Z(t— T)E_M(T) ~ndr= 6—1: +uy-Vp+uy-(n-Vn)p.

(4)

If there is no mean flow, the impedance condition of Eq. (3)
can be simply expressed by

plo) =Z(w)(i(w) - n), (5)

p() = — f (= Du(n) - ndr, (6)
2m)y

where p(f) and u(z) denote the inverse Fourier transforms of
p(w) and ii(w) at the impedance wall, respectively. The im-
pedance z(r) is given by

z2(1) = Z(w)e'dw. (7)

—o0

The evaluation of the convolution integrals in Egs. (4) and
(6) is computationally expensive and may become prohibi-
tively expensive especially for multidimensional CAA prob-
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lems. We propose a relatively efficient and robust broadband
time-domain impedance model, which circumvents the con-
volution integral problem.

B. Derivation of the broadband time-domain
impedance boundary condition

With §(w)=i(w)-n, Eq. (3) reads
iwp(w) +uy- Vp(w) +uy- (n- Vn)p(w) = — ioZ(w) (o).
(®)

The term uy- (n-Vn)p(w) is usually small, which is the case
if the curvature of the wall does not vary significantly, and
hence it is usually neglected. In this study, the impedance
surface is a plane and it is rightly neglected. Then the acous-
tic impedance boundary condition in the frequency domain
can be expressed as

iwp(w) +uy - Vp(w) = - iovZ(w) (). 9)

To proceed further, we need to model the impedance, Z(w).

1. The impedance model

Care must be exercised in modeling the impedance so
that it provides the impedance boundary condition in a form
that is amenable to an efficient direct numerical simulation of
acoustics involving response to broadband frequencies. As
the second-order frequency response function (FRF) can act
as a low-pass filter or a bandpass filter, we propose to repre-
sent the impedance as a linear sum of FRFs (and provide a
posteriori justification) as follows:

Z(w) EN: a<6(iw)+a*’i
) = . - -
= bl(iw)* + b (iw) + b}

(10)

where N is the number of FRFs and the a’s and b’s are the
constants/parameters that are so determined as to yield the
best approximation to the empirical data. These parameters
can be determined by common optimization methods, such
as a nonlinear least squares fit algorithm or the steepest de-
scent method. In this study, the conjugate gradient method is
used to obtain the optimal values of the parameters,20’2'
which yield accurate representations of the well-known two-
parameter empirical impedance model"'® and of experimen-
tal data from NASA.'*'® The stability analysis in the appen-
dixes shows that the impedance model is stable if all model
parameters are real and positive. With N equal to 4, we ob-
tain a good approximation of engineering accuracy for the
impedance of the grass ground and the wool-felt ground,
respectively (Figs. 4 and 5). Again, the impedance model fits
very well with the Langley experimental data of a ceramic
tubular liner (CT73) (Fig. 6). Further discussion is deferred
to Sec. IV.

After the substitution of Z(w) from Eq. (10) in Eq. (9),
with some algebra and manipulation, we obtain

N
iwp(w) +ug - V() =iw[2ﬁj(w)], (11a)
J
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alio) + d

bi(iw)” + b (iw) + b5’

piw) =-¥w) j=1,...,N,

(11b)

which are obtained from Egs. (5) and (10). The inverse Fou-
rier transform of Eq. (11a) yields

N
dp ap;
—4uy-Vp= . 12
PRI 2—‘(% (12)

J
To implement this impedance boundary condition, we should
obtain the values of pressure, p; or their derivatives, dp;/ dr.
The pressure p;’s are the auxiliary values introduced by the
impedance model of Eq. (10) and only depend on the normal
velocity perturbation at the impedance surface. Thus, each p;
can be computed separately from the physical values, such as
the pressure and normal velocity at the wall. Now, p;(w) can
be rearranged into the following form after applying the in-
verse Fourier transform to Eq. (11b):

(bf)&_tzl+b11;tl+b]2pj =- a{)E+aflv , j=1,...,N,
(13)

where v is the normal velocity perturbation on the wall, and
p; is the pressure of the jth subcomponent in Eq. (12).

C. Discretization scheme

Using the second-order finite-difference scheme, Eg.
(13) can be discretized as

(n+1) n) (n-1) (n+1) (n-1)
D —2pA +p; D -p; .
bliEL I I + I + bl (;1+1)>
( 0 AP L 2Ar P
(n+1) (n—1)
Y -V .
=- <a6—2 VIR v(”)) (14)

for j=1,...,N. The solution of Eq. (14) for the acoustic
pressure at the (n+1) time step, pg."“), requires the acoustic
velocity at the (n+1) time step, v+ [and the acoustic pres-
sure and velocity at the (n) and (n—1) time steps], implying
the implicit nature of the impedance condition. The implicit
discretization of Eq. (13) may enhance the numerical stabil-
ity, but results in additional complexity. In order for the im-
pedance boundary condition to be implemented explicitly,
the normal momentum equation at the impedance wall is
applied. Substituting for dv/dt from the y-momentum equa-
tion in Eq. (21), Eq. (14) becomes

(n+1) n) (n-1) (n+1) (n-1)
D —2p. +p; D - p; .
biEL I I + I + bl (n+1))
( 0 A 1 2Af 2P
) o gp )
- <QJO(MX 4 ’[’;y — (15)

for j=1,...,N. All of the values except pj(,"”) are known, or
can be computed from the values in the interior computa-
tional domain and on the impedance surface at the previous
time step. At time level (n+1), p;"H) can be obtained explic-
itly from the following equation:
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(b{) b bzz) (n+1) _%pm)_(ﬂé_ﬂ) (n-1)

A2 T oA A2PT T\ A2 T 2ns
g gy
+(a{)<Mx —— - aj v
ox dy
(16)

for j=1,...,N. Using the pressure values, p;, and substitut-
ing them into Eq. (12), we get

p(n+l) _p(n—l) y Or)p(n+1) _RHS E p(n+1) p(n 1)
2At Toox 7 2At

(17)

In this study, the temporal and spatial derivatives of the pres-
sure in the impedance condition are discretized using the
second-order central difference scheme

n n n p(kl)
APty + Bp() + Cp{iiiy == 1+ RHS, (18)

M 1 M
A= B=s_, C=7X, 19
2Ax 2At 2Ax (19)

where the subscript (k,[) in Eq. (19) is the grid point index in
the x- and y-directions, respectively. Specifically, / represents
the grid point at the impedance surface in Eq. (18). For sim-
plicity, a uniform mesh is chosen with Ax=Ay=const. This
results in a tridiagonal matrix form. If fourth-order spatial
discretization is used in Eq. (17), a pentadiagonal equation
matrix system will result. If there is no mean flow in the
computational domain (M,=0), the impedance boundary
condition, Eq. (12), can be simply expressed as
N
p =2 pih. (20)

J

To make this impedance boundary condition satisfy the cau-
sality condition, acoustic perturbations are assumed to be
absent for +<<0 and all physical values are set to zero for ¢
<0 in the numerical simulations. The computed results using
the broadband time-domain impedance boundary condition
will be compared with the analytical/experimental solutions.

lll. VALIDATION PROBLEMS

To validate our time-domain broadband impedance
methodology, we choose two example problems: (i) the com-
putation of the sound field above an impedance ground rel-
evant to outdoor sound propagation, and (ii) the computation
of the sound field in a duct with mean flow relevant to acous-
tic fields inside and radiated from both inlet and exhaust of
turbofan engines.

A. Governing equations

We assume that the linearized Euler equations govern
the acoustic field
oau au

—+A,

U
—+B, WY o mSU=mF. (21)
ot Y gy
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FIG. 1. (Color online) Coordinate system of a point monopole source over
an impedance surface.
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(22)

where (x,y) represent the coordinates, p is the density per-
turbation, « and v are the velocity perturbations in the x- and
y-directions, respectively, p is the pressure perturbation, F is
the source vector, and M, and M, represent the Mach num-
ber in the x- and y-directions, respectively. For two-
dimensional problems, m=0, and for axisymmetric prob-
lems, m=1, where (x,y) represent the radial and the axial
coordinates, respectively. In this paper, density, velocity, and
pressure are nondimensionalized by p.,, ¢, and ParC2, respec-
tively. Quantities with the subscript % denote the ambient
conditions with c,, being the speed of sound. The coordinates
(x,y) are scaled with respect to an appropriate length, L,
which characterizes the problem. The characteristic length in
Problem 1 is the height of the monopole source above the
impedance surface, and in Problem 2 it is the duct height.

Problem 1: Acoustic wave reflection on an impedance
surface (no mean flow). The sound field due to an acoustic
monopole source in a homogeneous medium without mean
flow above an impedance ground is cylindrically symmetric,
in that there is no azimuthal variation. In order to consider
three-dimensional acoustic wave propagation, cylindrical co-
ordinates are used, where x is the radial coordinate, y is the
axial coordinate, and y=0 is the impedance plane. Figure 1
shows the schematic of the coordinate system and the com-
putational domain. The height of the monopole source, H*,
from the impedance plane is the characteristic length of the
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problem, with which all lengths are scaled, and thus the
acoustic source is located at (x,,y,)=(0,1). An image-source
point is used to obtain the analytic solution at an observer
point.3

To simulate the acoustic field, Eq. (21) (with the source
vector defined as F=[f,,,0,0,f,,]7) is solved with the follow-
ing initial and boundary conditions.

Initial condition: U=(p,u,v,p)"=0.

Boundary conditions: At the impedance boundary, y=0,
the time-domain impedance boundary condition [Eq. (17)] is
applied. At the radial open boundary, x=x.,, and the axial
open boundary, y=y., the perfectly matched layer (PML)
method” ™ is applied. Axial symmetry condition is applied
at x=0.

We consider both single-frequency and broadband-
frequency cases.

Case (a): Periodic reflection at a single frequency. A
monopole source is introduced to generate an acoustic wave
in the computational domain. Following Ju and Fung,3 we
introduce a monopole source equivalent to a point monopole
source strength, which is written as

1
fulr) =25 5B BT sin(or), (23)
T

w

where r=|r,—r,| is the distance between the observer at r,
and the source point at r, B,, is the half-width of a Gaussian
distribution, and k is the wave number. The half pulse-width

relative to the characteristic length B,,=B, /H* used for a

monopole is very small (B,=0.0375) to maintain solution
smoothness and to ensure equivalence with a point monopole
source. The nondimensional coordinates of the monopole
source are (x,y)=(0,1), where the coordinates have been
scaled with respect to the characteristic length represented by
the height, H*, of the source above the impedance surface.
Here H* is assumed to be equal to 2\*, where A*=c,./f. We
chose the frequency f=3 kHz as the human ear is most sen-
sitive around 2-5 kHz, and many acoustic simulations and
applications to sound reduction have used the frequency
range around it.

Case (b): Excess attenuation at broadband frequencies.
For broadband-frequency simulations, we introduce mono-
pole sources containing several frequencies of interest, and
obtain the response over an impedance wall. For this, the
monopole source term is defined as

45
Fouy,0) = 0.01 D o7 2= )%+ =y /B

m=1

100
Xcos[<w0+ 27(m - 1)—)t+2(m - 1)77/45} ,
c

©

(24)

B 21T
" 2wy +27(m—1) X 100/c.,]’
(25)

where wy=2mf, with f,=500/c.,, and c,=340 m/s, which
corresponds to 500 Hz.

x,=0, y,=1.0,

668  J. Acoust. Soc. Am., Vol. 125, No. 2, February 2009

acoustic
wave SiimaamesmuyassRALARRREE)

I hord wall

acoustic liner

FIG. 2. The schematic of the flow-impedance duct.

Problem 2: Sound propagation in a duct with a finite
impedance wall (with mean flow). We consider sound propa-
gation in a semi-infinite two-dimensional duct with a finite
impedance wall and unidirectional mean flow (M,=0.1, M,
=0.0). The characteristic length is naturally the height of the
duct, D. Figure 2 is the schematic of the computational do-
main. Equation (21) is solved with the following initial and
boundary conditions.

Initial condition: U=(p,u,v,p)T=0.

Inflow boundary condition: Assuming a uniform mean
flow in the x-direction, the acoustic disturbances would sat-
isfy the following radiation boundary condition at inflow (x
=0):

p Pa
J J u J| u
Zo(1-M)— =2 . (26)
ot ox v ox\ v,

p Pa

The downstream propagating wave at the inflow region
[ps uy vy pal’ can be written as

ol i) eef e
sin§ @ 1+Mx_t +of, (27a)

A(f) = Amp X exp| —In2 =17
i {(3X Ay X (1+1)}?

Pa

1
u 1

S A(1)
Vd O
Pa 1

} ,  (27b)

where A(#) and ¢ denote the amplitude and the phase of the
incomian acoustic waves, respectively. The constant Amp is
set 10 V2p,i1057Y20/ p_c? with p,=2.0X 1075 Pa and ¢=0.
The implementation of the time-domain impedance bound-
ary condition requires physical information from the previ-
ous time step. To avoid the transient effect of incoming
waves on the response of an impedance surface, a Gaussian
distributed incoming wave amplitude, as expressed in Eq.
(27b), is introduced, which precludes abrupt jumps of physi-
cal values in the initial stage near the impedance wall.

Outflow boundary condition. At the damping layer, (16
<x=<19), the two-dimensional PML method”> % is used to
damp out the waves to prevent their reflection back into the
domain of computation.

At the upper rigid wall (y=1), the normal velocity is set
to zero. At the bottom impedance boundary (y=0), the time-
domain impedance boundary condition [Eq. (17)] is im-
posed.

Bin et al.: Broadband time-domain impedance boundary conditions



B. Numerical algorithm

In this work, the seven-point stencil dispersion-relation-
preserving (DRP) scheme is used for spatial discretization.”
A low-dissipation, low-dispersion Runge—Kutta method is
used for time integration.27

1. Numerical damping

The DRP scheme is a central difference scheme with
fourth-order accuracy with zero intrinsic dissipation. In order
to eliminate spurious short waves and to improve numerical
stability, two kinds of damping terms are used in this com-
putation. The first kind is artificial selective damping pro-
posed by Tam and Webb,?® which is added to the discretized
finite-difference equations, as shown in Eq. (29). An inverse
mesh Reynolds number R}'=v,/(a.,A), where v, and A are
the artificial kinematic viscosity and mesh size, respectively,
is prescribed over the whole computational domain to damp
out the spurious waves.

U = Ul + AzE bK, (28)

3

n 1 n n
K =- A—AXE a; Uk+j,— —B Z a;uy),;— mSUy!
X =3 j==3
+ Dy (U) + D /(U), (29)

V) = (D) + (D))=~ 3 2 AU+ UL,

j——3
(30)

Near the wall a reduced number of points are used for damp-
ing, ie., j=-2,...,2 at [=3 and j=-1,...,1 at [=2 in
(5),),(’,. The coefficients and the details can be found in Ref.
26.

On the impedance surface, there exists a mismatch of
velocity and pressure because of their relationship in the
acoustic impedance condition. Therefore, the amplitudes and
the phases of the incoming waves to the impedance wall will
be changed after the reflection from the surface. Further-
more, due to the use of the second- or fourth-order finite-
difference discretization for the impedance condition in Egs.
(14) and (17), all of the time impedance information cannot
be included in this discretization. To remove unphysical sur-
face waves, which may be generated in this process, and to
obtain the stable solution of the acoustic reflection from the
surface, the following dissipation is used in the interior do-
main. Fourth-order dissipation is used with the second-order
computations of the impedance condition, and sixth-order
dissipation is used with the fourth-order computations

k(&P + MU, DEW) = k(&Y + 87U,
(31a)

D) =~
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TABLE I. The parameter values used in the computation (Ref. 15.)

Effective rate of
change of porosity

Effective flow
resistivity (o)

(kPas m™) (a,) (m™)
Grass-covered ground 100 20
Wool-felt material 38 15

2

5§c4)U= > WiUjsig
=2

fori=-2,...,2,

with w;=[1 =46 -4 1]

(31b)

3

8OU = wiUsy withw,=[1 =615 =2015 -6 1]
i=-3

fori=-3,....,3. (31c¢)

Typical values of the constants «* and «© are 1/128 and
1/512, respectively. The y-direction operators are defined in
a similar manner. Dissipation is set to zero if values beyond
a boundary are needed in the computation. It was found from
the numerical simulation that the use of two kinds of damp-
ing can effectively eliminate the small amplitude three-point
oscillations without affecting the accuracy of the physical
solution and was critical in obtaining stable numerical solu-
tions.

IV. RESULTS AND DISCUSSION
A. The impedance model

Problem 1: Acoustic wave reflection over an impedance
surface. In the following calculations, an empirical two-
parameter impedance model” is used for the impedance
data, where the normalized specific impedance Z of the
ground is given by

(%) 00

Z=0436(1-i)| =5 | —19.48i—, (32)
f f

where f is the frequency, and o, and «, are the effective flow
resistivity and the effective rate of change of porosity with
depth, respectively. This model has often been used to fit
excess attenuation data, especially that measured outdoors."”
In this study, two types of parameter values are used for the
validation of the impedance boundary condition. The param-
eters are given in Table 1.

The objective is to determine the impedance function
Z(w) in Eq. (10), which is the best approximation to the
empirical curve [Eq. (32)]. To that end, we choose frequen-
cies w;, [=1,2,3,..., Ny from the frequency range of in-
terest, and for each frequency we construct a FRF whose
peak equals the impedance value at that frequency. Specifi-
cally, a second-order bandpass filter has the peak frequency
and bandwidth, respectively, given by wé:bz/bo and B
=b,/by. The initial values of a’s are arbitrarily assumed to be
unity. Figure 3 shows the schematic of the initial FRFs and
the experimental impedance curve. With this initial guess of
impedance,
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FIG. 3. The schematic of a modeled impedance function.

aé(iw,) + a{

bliow)* + bj(iw) + b}’

N
Z=Z(w) = 2,

J=1

(33)

we start the minimization process of the objective function
[=3})9al(Z,~Z7,)* (where Z; are the empirical or experimental
data) to obtain the optimal values of the parameters a’s and
b’s. In the present case, we initially chose four uniformly
spaced frequencies (specifically, w;=2,4,6,8 kHz) in the
frequency range of interest for both the grass and wool-felt
grounds. With these as peak frequencies, initial FRFs are
constructed to form the initial Z;, and start the optimization
process. Initial guess is important to ensure convergence of
the optimization process to the right critical point. The con-
vergence tolerance on the parameter value is on the order of
1076, The optimal parameter values are given in Appendix A.

Figures 4 and 5 show the comparison between the two-
parameter impedance model”” and the fitted impedance
model used in this study for a grass ground and a wool-felt
ground. There is an excellent agreement between the empiri-
cal curve and the fitted model. In these figures, individual

6 2 T L L L
LB LA R O\ T Elmp‘iiri‘cal‘ ] - ) ) . Elmpirica\ :
Fitted model | Fitted model |
— — - 1stFRF B — — - 1stFRF |
—-—-- 2ndFRF 1 —-—-- 2ndFRF ]
5 — — - 3rdFRF = i — — - 3dFRF ]
Y 4hFRF ] B 4hFRF ]
[\ ] oF -
4\ - [ — ]
| ] - 7
a ] [/ R
[\ ] o 7
83p 1 g
c F\ E c [i
s | 4 5]
> |\ J 52 T “' 7]
0 | @©
o N N 1 e | ]
2 - x g g
B . 3 .
[N i 1
1k I ]
| 4F ]
| i ]
i [ ]
0 v — 5] ]
-1 IR IR ENAANA A i | INTRNI BRSO
2 4 6 8 2 4 8
frequency [kHz] frequency [kHz]

FIG. 4. (Color online) Fitted impedance model (solid line) and empirical
model (circles): surface impedance of the typical grass ground. The indi-
vidual FRFs are shown for comparison of their impedance content.
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FIG. 5. (Color online) Fitted impedance model (solid line) and empirical
model (circles): surface impedance of the typical wool-felt material. The
individual FRFs are included to show their relative impedance content.

FRFs are also plotted to show that most FRFs contain the
contributions of all the frequencies of interest (from
500 to 8 kHz) in both the resistance and the reactance, ow-
ing to broadband characteristic of the impedance surface.
Problem 2: Acoustic wave propagation in a duct with a
finite acoustic liner. The input data used to extract the im-
pedance of the test specimen were obtained from measure-
ments using a flow-impedance tube at the NASA Langley
Flow-Impedance Test L21b0r21t0ry.9’10’16 To fit our impedance
model to the experimental data, we proceeded as in the case
of Problem 1 except that we set the peaks of the FRFs at
w;=1000, 1500, 2000, 2500, and 3000 Hz. The optimal val-
ues of the model parameters are given in Appendix A. Figure
6 shows the comparison between the experimental values
and the fitted model. Excellent agreement is observed. The
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FIG. 6. (Color online) Fitted impedance model (solid line) and experimental
data (circles) for resistance and reactance of a ceramic tubular liner (CT73).
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FIG. 7. Comparison of harmonic pressure distribution computed in time
domain (symbols) with analytical solution (solid line) on the impedance
surface (y=0) at =50 T at f=3 kHz over a grass ground (Z=2.52-2.65i).

impedance characteristic shows the resonance phenomenon
in the impedance curve. The contribution of the second FRF
term among the five FRFs that make up the impedance curve
is dominant when compared with the other terms. Improve-
ment in the impedance model can be obtained by increasing
the number of FRFs, but we obtain satisfactory results using
four or five FRFs in each problem.

B. Numerical validation

Case (a): Periodic reflection at a single frequency
(Problem 1). In order to validate the impedance boundary
condition, the numerical simulation of sound reflection over
an impedance wall at a single frequency is performed. In this
computation, the grid spacing and dimensions are Ax=Ay
=1/80 and D, X D=3 X3 in the x- and y-directions, respec-
tively. Computations are performed using a nondimensional
time step of Ar=CFLAx where the Courant-Friedrich-Lewy
(CFL) number has the value of 0.05.

Figures 7 and 8 show comparisons of the harmonic pres-
sure distribution computed in the time domain with the ana-
lytical solution on the impedance surface (y=0) and along
the line perpendicular to the impedance surface (x=0) at ¢
=50T at f=3 kHz over a grass ground (Z=2.52-2.65i).
Figures 9 and 10 compare the analytical solution with the
numerical solution using the present impedance boundary
condition for an impedance value of wool felt at f=3 kHz
(Z=1.55-1.65i). These figures show excellent agreement
between the analytical and numerical solutions.

Case (b): Excess attenuation at broadband frequencies
(Problem 1). To show that the impedance boundary condition
works well in broadband problems, excess attenuation at
broadband frequencies is performed and compared with an
analytical solution in this section. The numerical simulation
was performed on a 461 X241 equally spaced grid in both
the x- and y-directions (Ax=Ay=1.13X1072) with a CFL
number of 0.05. In this computation, monopole sources con-
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FIG. 8. Comparison of harmonic pressure distribution computed in the time
domain (symbols) with analytical solution (solid line) along the line perpen-
dicular to the impedance surface, i.e., axisymmetric line (x=0) at =50 T at
f=3 kHz over a grass ground.

taining 45 frequencies are considered, as is obvious from Eq.
(24). Time signals stored at the observer points are used to
compute the sound pressure level (SPL) (in decibels) for
comparing the excess attenuation. The time data required to
compute the SPL are stored after the sound field reaches the
periodic state. Figure 11 compares the prediction of excess
attenuation, which is defined as the total sound field relative
to the direct field, for a monopole. The source and observer
height are 1.0 m and 0.5 m, respectively, and the separation
range along the x-direction for the comparison is 1.0 m. Fig-
ure 11 shows the comparison of excess attenuation between
the computed result and the analytical solution for a grass
ground and for a wool-felt ground. A fast Fourier transform
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FIG. 9. Comparison of harmonic pressure distribution computed in the time
domain (symbols) with analytical solution (solid line) on the impedance
surface (y=0) at r=50T at f=3 kHz over a wool-felt ground (Z
=1.55-1.65i).
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FIG. 10. Comparison of harmonic pressure distribution computed in the
time domain (symbols) with analytical solution (solid line) along the line
perpendicular to the impedance surface, i.e., axisymmetric line (x=0) at ¢
=50 T at f=3 kHz over a wool-felt ground.

is used to obtain the SPL for each individual frequency from
the time accurate signals. To obtain the SPL of the direct
field, additional numerical computations without an imped-
ance wall were performed. It can be seen from these figures
that there is a little difference between the predicted and the
analytical excess attenuation spectra for a monopole source.
The agreement between the calculations and the analytical
solution gives us confidence that it is possible to get accurate
broadband numerical solutions using the broadband time-
domain impedance boundary condition developed in this pa-
per.

1. Absorption in an acoustic liner with mean flow
(Problem 2)

The numerical simulations were performed on a 571
X 31 equally spaced grid in both the x- and y-directions
(Ax=Ay) with a CFL number of 0.02. An acoustic wave of
SPL=130 dB is introduced at the inflow boundary. The
acoustic pressure signals required to compute the SPL along
the upper wall are collected after the transients leave the
computational domain and the field becomes periodic. Nu-
merical computations were performed at six different fre-
quencies from 0.5 to 3.0 kHz at 0.5 kHz increments. Fourth-
order spatial discretization is employed in both the x- and
y-directions for the governing equations and second-order
discretization is used for the broadband impedance boundary
condition, as mentioned in Eq. (15).

Figure 12 shows the comparison of the upper wall SPL
results for the current calculations with the measured data.
The symbols in these figures indicate the experimental data.
The agreement between the measurements and the current
results is excellent. In Fig. 12, it is shown that sound absorp-
tion in an acoustic liner is a function of frequency and that
the large absorption occurs at 1.0 kHz and the small absorp-
tion occurs at 2.0 kHz.
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FIG. 11. (Color online) Comparison of excess attenuation of sound due to a
monopole between computed result (symbols) and analytical solution (solid
line). The source-receiver geometry is y,=1.0, y,=0.5, and range equals 1.0.
(a) Grass ground; (b) wool ground.

V. SUMMARY AND CONCLUSIONS

In this paper, a broadband time-domain impedance
boundary condition has been developed and validated. The
frequency-domain impedance condition was represented as a
linear sum of second-order frequency response functions, as-
suming that the impedance is independent of the location on
the surface. This allowed the construction of a bandpass filter
and a low-pass filter type response function as the approxi-
mation to the expensive convolution integral in the conven-
tional time-domain impedance condition. This frequency re-
sponse function utilizes the past pressure and velocity
outputs, and the present acoustic pressure inputs recursively.
Two-dimensional numerical experiments reveal that there is
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FIG. 12. Upper wall SPLs given by the single-frequency simulations. M=0.1: (a) f=0.5 kHz, (b) f=1.0 kHz, (c) f=1.5 kHz, (d) f=2.0 kHz, (e) f

=2.5 kHz, and (f) f=3.0 kHz.

good agreement between the numerical results and
analytical/experimental solutions and indicate that the
present method is capable of accurately simulating the physi-
cal broadband phenomena over acoustically treated surfaces.

It stands to reason that the frequency-domain methods in
situations where they are readily implementable may outper-
form the present time-domain impedance boundary condition
or any time-domain approach. But then the present method is
intended for real-world problems that may not be amenable
to frequency-domain methods or current time-domain ap-
proaches. Having demonstrated the validity, robustness, and
practicality of the method, its relative performance vis-a-vis

J. Acoust. Soc. Am., Vol. 125, No. 2, February 2009

other time-domain methods remains to be established in the
context of acoustic simulations involving broadband fre-
quencies, such as impulsive noise, turbulence noise, etc. It is
but proper to mention that it may be difficult if not impos-
sible to apply the current methodology to such problems. It
will be the topic of future work.
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APPENDIX A: BROADBAND-FREQUENCY
IMPEDANCE FUNCTION

The curves shown in Figs. 4—6 were obtained by apply-
ing a conjugate gradient method®®?! to the frequency-domain
impedance function given by Eq. (10). A total of four FRFs
were used in both cases of a grass ground and a wool-felt
ground. A total of five FRFs were employed for the case of
an acoustic liner. The parameters a), to b} of this equation
were found to be

4
Z(w)= 2,

J=1

aé(iw) + a’i

b(")(ia))2 + b{(iw) + b/2 ’

w=27f where f is in Kilohertz. (A1)

1. The coefficients for the grass ground

ap=0.70417353/27, aj=0.387 007 09,
bh=0.95742222/(2m)2, b} =0.274703 90/2m, by=0.183 504 06,
ay=0.771817022m, a;=1.193269 66,
b3 =0.144220 47/(2m),

b?=0.574349 11/2m, b3=0.404762 86,

ap=0.57908901/27, ai=131183780,
by=1.72486051 X 107%/(2m)%, b} =0.34093839/2, b3=0.29351578,
ay=0.50087321/2m, af=1.16278845,

by=0.706 389 34/(2m)2, b}=0.877 132 11/27, b3=1.39376161 X 1073,

2. The coefficients for the wool-felt material
ground

ay=0.840338 25/2m, a;=0.73037099,

by =3.40012798/(2m)2, b} =0.96575594/2m, by=0.23480197,

ag=1.692764 18/2w, al=2.35833775,
ba=5.06413735/(2m)2,  b?=5.960787 85/2m, b3 =3.448 883 64,
ay=2.97842778/2m, a;=2.11855071,
by=0.972494 18/(2m)2, b} =1.476833 16/2m, b3 =0.200 666 12,
ag=0.50658059/27, a}=2.44288462,

by=2.14224930 X 107%(2m)?, b}=0.534803 50/2, b3=1.39559961.

3. The coefficients for the ceramic tubular liner
(CT73)

ap=15.14226285, a}=2.20156275,

by=8.95817474, b{=5.80751792, by=0.47229949,
ap=1.42901344, a?=235288452,

b3=9.35169997 X 1072, h?=0.29435028, b3=1525151151,
ay=2.50971150, aj=131949180,

by =5.325179 34,

b}=1.90752080, b3=1.00448705,
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a}=2.78115108, af=3.84438427,

by=0.753 67858, b}=147413638, b3=1.15504805,

ay=2.62897968 X 1072, aj=5.68283961 X 1073,

by=7.62703104 X 107, h7=4.203 12155 X 1073, 53=0.58037655.

APPENDIX B: THE WELL-POSEDNESS OF THE
BROADBAND FREQUENCIES FOR IMPEDANCE
SURFACES

Assuming the impedance surface is located in the x-z
plane and applying the Fourier—Laplace transform to the
governing equations, which are the linearized Euler equa-
tions, it can be found that the solution satisfies the outgoing
wave condition at y— o as follows: Consider the separable
solutions

p(x,v,2,1) p(y)

u(x,y,z,1) _ i(y) i(Qt-ax—pz)

vixy,zt) || #(y) e . o
w(x,y,2,1) Ww(y)

By substituting these equations into the governing equations,
the corresponding solutions can be obtained in the following
form:

() 1

ﬁ()’) —A a/f) eik(‘:’z —nh2y (B2)
o(y) - (& -D"o ’

w(y) B/

where ®=Q/k, k=(a?+ %), and A=const. The branch cuts
of the function (&*—1)"? are taken to be 0<arg(®*—1)"?
< 1, as shown in Fig. 13.

The Fourier—Laplace transforms of the impedance con-
dition are expressed as

ao + al/(lQ)
bo(iQ) + by + by (i)

p= (B3)

Substitution of Eq. (B2) into Eq. (B3) leads to the following
dispersion relation:
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A bz/k 0} ap
(kbo<lw)+bl+i_cﬁ)<m> +k—(bz=a0. (B4)

In this equation all of the coefficients of a’s and b’s are real,
positive numbers. This boundary treatment is well posed if
this equation has no solutions in the lower half of the & plane
depicted in Fig. 13. Let the left-hand side of this equation be
expressed by f(®).
n A bz/ k 0} ag

flo) = (kbo(lw) +b,+ E)(m) + %l. (B5)

Figure 14 shows the map of the lower half ® plane in the
f plane. For the case of ay>0, there is no value of ® in the
lower half of the @ plane that can satisfy the dispersion re-
lation of Eq. (B4), since the right-hand side of Eq. (B4) is
real and positive. So it can be proven that there is no stability
problem in the case where all of the coefficient values are
real and positive.
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